MATH 2028 - Integrability Criteria

GOAL : Find necessary & sufficient criteria for a bdd function $f: R \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ to be integrable. Prop: (Riemann condition) Let f: R -> IR be a bodd function defined on a rectangle RERⁿ. Then, f is integrable over R IF AND ONLY IF YE>O, 3 partition @ of R st. U(f, @) - L(f, @) < ε. Proof: "=>" Suppose f is integrable over R. THEN: $\sup_{\mathbb{R}} L(f,\mathbb{P}) = \int_{\mathbb{R}} f dV = \inf_{\mathbb{R}} \mathcal{U}(f,\mathbb{P}).$ By def? of sup & inf. VE>0. 3 partitions P. P" $\int_{\Omega} f dV - \frac{z}{2} < L(f, \mathcal{P})$ S.**T**. $\int f dv + \frac{k}{2} > U(f.0)$ and Let P be a common refinement of P' and P".

By a previous lemma.

$$\int_{R} f \, dV - \frac{\epsilon}{2} < L(f, \mathcal{P}) \leq L(f, \mathcal{P})$$

$$\int_{R} f \, dV + \frac{\epsilon}{2} > U(f, \mathcal{P}) \geq U(f, \mathcal{P})$$
Therefore, $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.
$$"\langle = " \text{ Suppose } \forall \epsilon > 0, \exists \text{ partition } \mathcal{P} \text{ of } R$$
s.t. $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon$ (*)
Assume on the contrary that f is $\underbrace{NoT}_{integrable over } R$. Then
$$I_{i} := \sup L(f, \mathcal{P}) < \inf U(f, \mathcal{P}) =: I_{2}$$

Choose $\mathcal{E} := \frac{1}{2}(I_2 - I_1) > 0$. then for ANY partition \mathcal{P} of \mathcal{R} , we have

 $\mathcal{U}(f, \mathcal{P}) - \mathcal{L}(f, \mathcal{P})$

$$\geq \inf_{\mathcal{O}} \mathcal{U}(f,\mathcal{O}) - \sup_{\mathcal{O}} \mathcal{L}(f,\mathcal{O}) = I_2 - I_1 > 2$$

which is a contradiction to (*).

The following two propositions provide a way to generate new integrable functions.

Prop: Let $f,g: R \rightarrow R$ be bdd integrable functions over a rectangle $R \subseteq iR^n$. THEN, $f \pm g$ and Af are integrable over R. $\forall A \in iR$. Moreover, we have

and
$$\int_{R} (f \pm g) \, dv = \int_{R} f \, dv \pm \int_{R} g \, dv$$
$$\int_{R} df \, dv = \alpha \int_{R} f \, dv$$

Prop: Let $f: R \rightarrow R$ be a bdd function on a rectangle $R \subseteq R^{n}$. Suppose $R = R. \cup R_{2}$ for some rectangles $R. R_{2} \subseteq R^{n}$. THEN, $\inf(R_{1}) = \emptyset$ for some rectangles $R. R_{2} \subseteq R^{n}$. THEN, $\inf(R_{1})$ f is integrable (=? $f|_{R_{1}}: R_{1} \rightarrow R$, i=1,2, on R is integrable on R_{1} Moreover, $\int f dV = \int f dV + \int f dV$ $R. UR_{2} = R$, R_{2}

Proof: Exercises.

So far we have not seen many examples of integrable functions. The following proposition, however, shows that integrable functions exist in abundance.

<u>Prop</u>: Any continuous f: R → iR on a rectangle R ⊆ IRⁿ is integrable.

Proof: We want to apply Riemann condition, i.e. Claim: $\forall \epsilon > 0$. $\exists P$ st. $\mathcal{U}(f, P) - \mathcal{L}(f, P) < \epsilon$

We shall make use of a fact from analysis:

FACT: Any continuous function on a compact set is "Uniformly continuous"

Hence, VE', 0, 38, 0 st. (**)

 $\frac{\|x - y\| < \delta}{x \cdot y \in R} \implies \frac{|f(x) - f(y)| < \delta}{2}$

Proof of Claim: Fix any \$>0, choose & = $\frac{\epsilon}{V_{01}(R)}$ >0

and then 8>0 as above. Then, we fix a partition \mathbb{P} of \mathbb{R} sit. $\forall Q \in \mathbb{P}$,

diam (Q) := sup
$$|| \times -9|| < 5$$

By (***). for any Q $\in \mathbb{P}$.
Sup $f(x) - \inf f(x) < \frac{\varepsilon}{V_0 I(R)}$
Thus. we have
 $U(f, \mathbb{P}) - L(f, \mathbb{P})$

$$= \sum_{\substack{x \in Q}} \left(\sup_{x \in Q} f(x) - \inf_{x \in Q} f(x) \right) \cdot Vol(Q)$$

$$< \frac{2}{U_{01(R)}} \sum_{Q \in C} U_{01(Q)} = 2$$

It turns out that a bdd discontinuous function can still be integrable as long as the set of discontinuities is "small" in some sense.

2

 $\frac{\text{Def}^{n}}{\text{content zero if } \forall \epsilon > 0, \exists \text{ finitely many}}$ $\frac{\text{content zero if } \forall \epsilon > 0, \exists \text{ finitely many}}{\text{rectangles } R_{1}, \dots, R_{N} \text{ s.t.}}$ $(i) \quad A \subseteq R_{1} \cup \dots \cup R_{N}$ $(ii) \quad \sum_{i=1}^{N} \text{Vol}(R_{N}) < \epsilon$

Prop: Let $f: R \rightarrow iR$ be bdd on a rectangle $R \leq iR^n$, and $A := \{x \in R \mid f \text{ is NOT cts at } x\}$ If A has content zero, then f is integrable. <u>Proof</u>: Again, we shall apply Riemann's condition. Let E > 0 be fixed. We want to find a partition P st. U(f, P) - L(f, P) < E. • f bdd $\Rightarrow \exists M > 0$ st. $(f(x)) \leq M$. $\forall x \in R$

A has content zero ⇒ ∃ rectangles R₁,..., R_N s.t.

(i) $A \subseteq R_1 \cup \cdots \cup R_N \subseteq R$ (ii) $\sum_{i=1}^{N} V_{ol}(R_i) < \frac{\varepsilon}{4M}$ by taking $R_i \cap R_i$ otherwise

of the two types:

Type I: $Q' \subseteq R$; for some i

Type II: $Q' \subseteq$ the closure of $R \setminus \bigcup_{i=1}^{n} R_i$

Note that for each Q' in Type II,

flat is a cts function on Q'

hence f is integrable on Q' by previous proposition. Therefore, \exists partition PQ' of Q'st. $U(f.PQ') - L(f.PQ') < \frac{\epsilon}{2 \cdot \# \{Type II Q' \in P'\}}$

• Take P as a partition of R which is a common refinement to <u>ALL</u> P_{Q} , above.

Then. we have

U(f, 0) - L(f, 0)

 $= \sum_{\substack{Q \in P \\ x \in Q}} \left(\sup_{\substack{x \in Q \\ x \in Q}} \inf_{\substack{x \in Q \\ x \in Q}} \right) \cdot \operatorname{Vol}(Q)$

+
$$\sum_{\substack{Q \in O \\ x \in Q}} \left(\sup_{\substack{x \in Q \\ x \in Q}} - \inf_{\substack{x \in Q \\ x \in Q}} \right)$$
. Vol(Q)
Q $\subseteq Q'$ Type IL

$$\leq 2M \cdot \sum_{i=1}^{N} v_{\partial i}(R_{i}) + \sum \mathcal{U}(f_{i}, \frac{G}{Q}) - \mathcal{L}(f_{i}, \frac{G}{Q})$$

 $\mathcal{U}(f_{i}, \frac{G}{Q}) - \mathcal{U}(f_{i}, \frac{G}{Q})$

$$< 2M \cdot \frac{\varepsilon}{4M} + \frac{\varepsilon}{2} = \varepsilon$$

٥

Therefore, we have a sufficient condition for integrability:

To obtain a necessary <u>AND</u> sufficient condition for integrability. We need the notion of a "measure zero" subset.

$$\frac{\text{Def}^{n}}{\text{rectangles}} : A \text{ subset } A \subseteq \mathbb{R}^{n} \text{ is said to have}$$

$$\frac{\text{measure zero if } \forall \epsilon > 0 \ \exists a \text{ sequence of } \epsilon \text{ rectangles } \left[\mathbb{R}_{i} \right]_{i=1}^{\infty} \text{ s.t.}$$

$$(i) \quad A \subseteq \bigcup_{i=1}^{\infty} \mathbb{R}_{i}$$

$$(ii) \quad \sum_{i=1}^{\infty} \text{Vol}(\mathbb{R}_{N}) < \epsilon$$

The following theorem says precisely when a bold function $f: R \rightarrow R$ is integrable. The proof is rather involved and is left as a (challenging) exercise for the interested students.

Thm: Let $f: R \rightarrow iR$ be bdd on a rectangle $R \in iR^n$, Then. we have