MATH 2028 - Integrability Criteria

GOAL: Find necessary sufficient criteria for a bold function $f: R \subseteq R^n \to R$ to be integrable. Prop: (Riemann condition) Let $f: R \rightarrow R$ be a bdd function defined on a rectangle $R \subseteq R^n$. Then, f is integrable over R IF AND ONLY IF \forall ϵ >0. I partition P of R st. $|U(f, P) - L(f, P)| < \epsilon$. Hoof: "=> Suppose f is integrable over R. THEN: sup $L(f, P) = \int f dV = inf_{P} U(f, 0)$ P R P By def? of sup & inf. $\forall \epsilon > 0$. I partitions \mathbb{P} . \mathbb{P}'' $S.t.$ $\int_{0}^{1} f dV - \frac{\epsilon}{2} < L(f)$ R and $\int_{0} 4dV + \frac{\epsilon}{2} > U(4.0$ R Let Θ be a common refinement of Θ' and Θ'' .

By ^a previous lemma

$$
\int_{R} f dV - \frac{\epsilon}{2} < L(f, \rho') < L(f, \rho)
$$

$$
\int_{R} f dV + \frac{\epsilon}{2} > U(f, \rho') > U(f, \rho)
$$

Therefore, $U(f, \rho) - L(f, \rho) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

"L=" Suppose V E > 0. 3 partition P of R s.t. $U(f, \rho) - L(f, \rho) < \epsilon$ (*) Assume on the contrary that f is NOT integrable over ^R Then

$$
T_1 := \sup_{P} L(f.P) < \inf_{P} U(f.P) =: T_2
$$

Choose $\epsilon := \frac{1}{2}(T_2 - T_1) > 0$. then for AMY
partition $P \neq R$, we have

 $U(f, P) - L(f, P)$

 3 inf $U(f, P) - \sup f(f, P) = L_2 - L_1 > E$ \mathbf{C}

which is a contradiction to (x) .

The following two propositions provide ^a way to generate new integrable functions

 $Prop\colon Let\ f,g:R\to R$ be bdd integrable functions over a rectangle $R \subseteq R^n$. THEN, f±g and af are integrable over R. V a E R. Moreover, we have

$$
\int_{R} (f \phi) dV = \int_{R} f dV \phi
$$
\nand\n
$$
\int_{R} df dV = \alpha \int_{R} f dV
$$

 $Prop: Let f: R \rightarrow R$ be a bold function on a rectangle $R \subseteq R^n$. Suppose $R = R_1 \cup R_2$ R_i $\frac{1}{2}$ For some rectangles $R_1, R_2 \in \mathbb{R}^n$. [HEN, nintler] is integrable \leftarrow $f|_{R_i}: R_i \rightarrow R$, $i=1,2$ on ^R is integrable on Ri Moreover, $\int f dV = \int f dV + \int f dV$ RivRz

Proof: Exercises.

So far we have not seen many examples of integrable functions The following proposition however shows that integrable functions exist in abundance

 $Prop:$ Any continuous $f: R \to R$ on a rectangle $R \in \mathbb{R}^n$ is integrable.

Proof: We want to apply Riemann condition, i.e. $Claim: \forall \xi > 0. \exists P st. U(f.P) - L(f.P) < \xi$

We shall make use of a fact from analysis:

FACT: Any continuous function on a compact set is "uniformly continuous"

Hence, $\forall \, \boldsymbol{\epsilon} > 0$, $\exists \, \boldsymbol{\delta} > 0$ st. (**)

 $||x-y|| < \delta$ \Rightarrow $|\oint(x) - f(y)| < \epsilon'$ $x, y \in R$

Proof of Claim: Fix any 200 choose 2 E o Vol R

and then 8 >0 as above. Then, we fix a partition \mathbb{P} of R st. $\forall \mathcal{Q} \in \mathbb{P}$.

$$
diam(Q) := \sup_{x,y \in Q} ||x-y|| < 5
$$
\nBy ~~(xx)~~. for any ~~Q~~ ~~c~~ ~~Q~~
\n
$$
\sup_{x \in Q} f(x) - \inf_{x \in Q} f(x) < \frac{\epsilon}{\text{Vol}(R)}
$$
\nThus, we have

$$
U(T, U') - L(T, U)
$$
\n
$$
= \sum_{Q \in \mathcal{P}} \left(\sup_{x \in Q} f(x) - \inf_{x \in Q} f(x) \right) \cdot Vol(Q)
$$
\n
$$
< \frac{\epsilon}{U_0(R)} \sum_{Q \in \mathcal{P}} Vol(Q) = \epsilon.
$$

It turns out that a bdd discontinuous function can still be integrable as long as the Set of discontinuities is "small" in some sense. $Def^a: A$ subset $A \subseteq R^n$ is said to have Content zero if $V \epsilon > 0$. I finitely many rectangles RI...., RN 5.t. $(i) \quad A \subseteq R_1 \cup \cdots \cup R_N$ (i) $\sum_{i=1}^{\infty}$ voi (R_N) < $\sum_{i=1}^{\infty}$ i 2 j

 $Prop: Let f: R \rightarrow R$ be bdd on a rectangle $R \in R$, and $A := \{ x \in R | f \text{ is } N\text{s of } ctx \}$ If A has content zero, then f is integrable. Proof: Again, we shall apply Riemann's condition. Let ϵ >0 be fixed. We want to find a partition P st. $U(f, P) - L(f, P) < \epsilon$. f bold \Rightarrow $\exists M$ >0 st. $|f(x)| \le M$. $\forall x \in R$

 \bullet A has content zero \Rightarrow \exists rectangles $R_1,...,R_N$ s.t.

(i)
$$
A \subseteq R, \cup \cdots \cup R_N \subseteq R
$$

\n(ii) $\sum_{i=1}^{N} Vol(R_i) < \frac{\sum_{i=1}^{N} Vol(R_i)}{4M}$ otherwise

Any rectangle $Q' \in \mathbb{P}$ belongs to exactly one of the two types

Type $I : Q' \subseteq R$; for some i $Type II: Q \subseteq the closure of R \setminus \bigcup_{i=1}^{n} R_i$

Note that for each Q' in Type $I\!I$,

 $f|_{\mathcal{O}}$ is a cts function on \mathcal{Q}'

hence f is integrable on Q by previous proposition Therefore. \exists partition $\widehat{\mathbb{C}^d}$ of \mathbf{Q}^e ^r E $f: U(f_0(x) - L(f_0(x)))$ 2 · 4 | Type I Q E P

. Take $\mathcal P$ as a partition of $\mathcal R$ which is a common refinement to AL_0 Q_2' . above.

Then. we have

 $U(f, \Omega) - L(f, \Omega)$

$$
= \sum_{Q \in \Omega} \left(\sup_{x \in Q} f(x) - \inf_{x \in Q} f(x) \right) . \text{ Vs1}(Q)
$$

Q \in \Omega' type I

$$
+\sum_{Q\in\Omega^{'}}\left(\sup_{x\in Q}f(x)-\inf_{x\in Q}f(x)\right)\cdot V\bullet V(Q)
$$

Q\subseteq Q'TyeI

$$
\leq 2 M \cdot \sum_{i=1}^{N} \mathrm{Vol}(R_i) + \sum_{\substack{\mathbf{a}' \in \mathbf{0}^{\prime} \\ \text{Type } \mathbf{I}}} \mathcal{U}(\mathbf{f}, \mathbf{0}^{\mathbf{a}^{\prime}}_{\mathbf{a}}) - L(\mathbf{f}, \mathbf{0}^{\mathbf{a}^{\prime}}_{\mathbf{a}})
$$

$$
2M \cdot \frac{8}{4M} + \frac{8}{2} = 8
$$

D

 \sim \sim since \sim since \sim Inerefore, we have a sufficient condition for integrability

To obtain a necessary AND sufficient condition for integrability, we need the notion of a "measure zero" subset.

Def²: A subset
$$
A \subseteq \mathbb{R}^n
$$
 is said to have
\nmeasure zero if $\forall \epsilon > 0$. \exists a sequence of
\nrectangles $\{R_i\}_{i=1}^{\infty}$ s.t.
\n(i) $A \subseteq \bigcup_{i=1}^{\infty} R_i$
\n(ii) $\sum_{i=1}^{\infty} Vol(R_N) < \epsilon$

The following theorem says precisely when ^a bad function $f: R \to R$ is integrable. The proof is rather involved and is left as a (challenging) exercise for the interested students

Thm: Let $f: R \rightarrow R$ be bdd on a rectangle $R \subseteq R^n$, Then. we have <u>and the state</u>

$$
\begin{array}{|l|l|}\n\hline\nS &cts & on & R & except \\
\hline\non a set of measure zero & <=> 0 \\
\hline\n\end{array}
$$